
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

Application of Graph Theory in Route Selection for

the Game Slay the Spire

Jaya Mangalo Soegeng Rahardjo - 135200151

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
1author@itb.ac.id

Abstract—Slay the Spire is a video game where the player must

traverse through a treacherous dungeon filled with enemies and

bosses. The player can move forward in the dungeon by picking

routes that constantly branch and merge with each other, forming

a directed graph. A program can be used for pathfinding utilizing

Dijkstra’s algorithm to find a route that is optimal for the player

to follow. This paper discusses the implementation of a basic

pathfinding program and the various ways the program can be

upgraded.

Keywords—Dijkstra’s Algorithm, Graph Theory, Slay the Spire,

Video Game

I. INTRODUCTION

Slay the Spire is a rogue-like, turn-based, deck-building,

action video game developed and published by MegaCrit

Games. The player takes control of one of 4 characters with

unique special abilities and decks and traverse through the

dungeon named “The Spire”. To win the game, the player must

traverse through three ‘acts’ or sections of the spire. Each

section consists of 16-17 floors which can be encounters or

events and a boss floor located on the very last floor.

Combat-wise, the game does it in a turn-based system with

cards that you have obtained in your deck, you will draw 5 cards

from your deck every turn and gain 3 energy which you can

spend to use the cards that you drew either to attack the enemy,

defend yourself, cast buffs and debuffs, and other actions.

During the enemy’s turn, they can also do similar things such as

attack the player, defend themselves, cast buffs and debuffs and

so on. The enemy’s next action can be seen during the player’s

turn so that they can prepare against it. The players have health

points (HP) which are expected to be reduced after each

encounter and can be increased in various ways, if the player’s

HP reaches 0, then the game is over.

Figure 1, Screenshot of Slay the Spire’s combat gameplay

(store.steampowered.com/app/646570/Slay_the_Spire/

accessed on December 11, 2021)

Exploration-wise, the player will be given a map filled that

shows routes which the player can take to go through the floors.

In the map, each floor will be given a symbol stating what you

will encounter where you to choose said floor. For example, a

monster symbol will signify an enemy encounter, a monster with

horns symbol means a mini-boss encounter, a money sack is a

shop where you can spend gold to buy various items, and so on.

Figure 2. Screenshot of Slay the Spire’s navigation map

By defeating enemies and going through the dungeon, you

will gain cards that you can add to your deck, upgrade cards, or

gain powerful relics and potions which will give you unique and

powerful buffs. The game follows a risk-reward mechanic

where stronger enemies will give better rewards, you may

follow a risk-free route but you may not gain the same rewards

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

you would for following a risky route. However following a too

risky route might mean you getting overwhelmed and getting a

game over via dying. Therefore, a flexible strategy with a good

balanced of risk and safety in choosing which routes to go is a

necessary to win the game.

 In an actual game, the pathfinding by the player must be

dynamic based on said player’s current situation, “am I strong

enough to take risks?”, “can I defeat the enemies encountered in

this route?” However, for streamlining purposes, we will apply

a static pathfinding algorithm where it will calculate the optimal

route at the very start of the game and not during the middle.

II. THEORETICAL FOUNDATION

A. Graph Theory

Graphs are a type of visualizations often used to represent

discrete objects and their relations together. Graphs are

structures made of vertices and edges, where a vertices are

nodes/objects and edges are the relations that connect these

vertices together.

Figure 3. A representation of a graph with 4 vertices and 5

edges

(https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-

2021/Graf-2020-Bagian1.pdf, accessed on December 13 2021)

A formal definition of a graph would be defined as G =

(V,E), with V representing the sets of all vertices in G and E

representing the sets of all the edges in G.

B. Types of Graphs

Based on their complexity, graphs are divided into two types:

Simple graphs and complex graphs. Simple graphs are graphs

that does not contain any duplicate edges or pseudo edges,

graphs that contain those are called complex graphs with a

graph containing duplicate edges called a multigraph and a

graph containing pseudo edges called a pseudo-graph.

Based on their directions of their edges, graphs can also be

divided into two types: undirected and directed. Undirected

graphs means that a graphs edges has no directions while a

directed graph’s edges does.

There is also another type of graph which is differentiated

based on the edges, a weighted graph is a graph where each

edge is given a numerical value. An example is a graph of

roads between cities, if the edge connecting city A and B is

given a weight, it may mean the distance between city A and

city B.

C. Dijkstra’s Algorithm

Djiksta’s Algorithm is an algorithm usually used in finding

the shortest path for a weighted graph. Founded by Edsger W.

Dijkstra in 1956 to find the shortest paths between nodes in a

graph. Dijkstra’s Algorithm has then had many variations with

the most common ones are to find the shortest path between a

singular point and all other points within that graph. Another

common variant is an algorithm that will calculate the shortest

path from a point in a graph to another point in a graph.

The first variant is commonly visualized with a table

containing all the important details such as the name of the

node, the shortest distance so far, the current shortest path to

get said node and if the node has been checked or not. This

table will be filled with important information as the algorithm

runs and it will stop as soon as all nodes have been checked.

The second variant is commonly visualized with a priority

queue. The algorithm will constantly fill the queue with data

on which node to process. The queue is ordered by the weight

with a lower weight being more prioritized. The algorithm will

constantly add to the queue and update it until we reach or

process the end goal.

Example and visualization of Djikstra’s Algorithm second

variant:

Figure 4. A graph example of a Dijkstra’s Algorithm

Say we want to find the shortest path from node A to F, the

algorithm would do it step by step.

1. Insert Node A into the priority queue with the weight 0.

Table I. Priority Queue after Node A is inserted.

2. Process the first node in the queue, since only A is in the

queue, Node A will be processed first. Processing Node A

would mean inserting all the nodes connected to A which is

Node B and Node C with weight 5 and 2 respectively into

our queue.

Figure 5. Visualization of a Dijkstra’s Algorithm processing

node A.

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-Bagian1.pdf

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

Table II. Priority Queue after Node A is processed.

3. We will again process the first node in our queue, this time

its C because its weight is lower than B. Processing Node B

would mean inserting (or updating if possible) all the nodes

connected to B. We will insert Node D and Node F. Node D

will have the weight 3 (2+1) and node F will have the weight

8 (2+6).

Figure 6. Visualization of a Dijkstra’s Algorithm processing

node C.

Table III. Priority Queue after Node C is processed.

4. We will then process Node D. There are two nodes

connected to it which is Node B and F. Both of these are

already in our queue so we check if we can update it. Using

the A-C-D-B path would mean that B will have a weight of 4

and therefore shorter than using the previous A-B path.

Because A-C-D-B is shorter, we will replace the Node B in

our queue with the new one. We will repeat the same step

with Node F causing F to have a weight of 7 (2+1+4) with

the route A-C-D-F instead of A-C-F.

Figure 7. Visualization of a Dijkstra’s Algorithm processing

node D.

Table IV. Priority Queue after Node D is processed.

5. The next process will be Node B which will mean Node E

with a weight of 8 will be inserted to our queue. The

algorithm would then check Node F. The route through B to

F (A-C-D-B-F) would have a weight of 9 which is bigger

than its current weight (7), therefore we ignore it and not

update node F in our queue.

Figure 8. Visualization of a Dijkstra’s Algorithm processing

node B.

Table V. Priority Queue after Node B is processed.

6. Our next process is Node F, which is our target node.

Because of this, the algorithm is finished and we found our

shortest path from Node A to F, A-C-D-F with a weight of 7.

We can now deallocate our queue as we will not be using it

anymore, if you were to use the first variant, we will

continue going until we reach Node E, which is unnecessary

for our purpose.

Figure 9. Visualization of a Dijkstra’s Algorithm processing

node F.

With this, we have successfully found the shortest route from

A to F with our algorithm.

III. SLAY THE SPIRE

Slay the Spire has 6 main nodes not including the boss node

and the buffed elite node, some nodes are much preferable than

others due to the rewards and effects it gives by choosing said

nodes. So choosing a route that will go through the most of

these “rewarding” nodes are preferred.

A. Rest

Nodes that are symbolized by a campfire is a rest site. These

rest sites are randomly generated throughout the dungeon and

little of them are available per act, other than the one rest site

guaranteed to be available right before the boss, every other rest

site is random and generally 2-3 rest sites can be reached most

of the time.

In a rest site, we can do several actions such as ‘Sleep’ to rest

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

to heal our character, ‘Forge’ to upgrade our cards, or ‘Recall’

to gain the red key. If we have some certain effects in the game

through relics, there are other options available such as Toke:

remove a card from you deck, Lift: gain +1 strength, Dig: gain

a random relic. Only one of these options can be used at each

rest site.

At any point, a rest site is extremely valuable and should be

prioritized at almost every scenario, the ability to increase your

health points (HP) when low on it or the ability to improve your

card’s strength in battle is extremely useful.

B. Merchants

Nodes that are symbolized by a bag with a dollar sign, is a

merchant. Merchants are very rare and often only two of them

are generated throughout the act.

In a merchant node, you can buy and only buy items and

services using gold that you collected. You can either buy a card,

buy a relic, buy a potion, or remove 1 card from your deck.

Merchant nodes are very useful for the most part even if there

are some exceptions such as running out of gold making a

merchant tile useless. Even then, the very few merchant nodes

should be prioritized the same way or perhaps more than the rest

site.

C. Treasure

Nodes that are symbolized by a chest is a treasure. A treasure

node will only show up exactly once each route on the very

middle of the dungeon. No matter what route you take, you will

only ever be able to get one treasure each route.

A treasure node will give you the option to choose between a

free random relic or the blue key and therefore very valuable,

more valuable than a rest site or a merchant node. However,

even though they are more valuable, as there is exactly only one

treasure node accessible each route no matter which route the

player chooses, there is no need to put them in our consideration

while playing the game or when calculating with our algorithm.

D. Enemy

Nodes that are symbolized by a monster is an enemy

encounter. These are for the most part randomly generated and

extremely common and are guaranteed to at least be

encountered at least a few times.

An enemy encounter will force you in a win or die situation

with relatively weak enemies, you are expected to be hit with

minor damage every encounter with against basic monsters.

After each successful encounter, you will gain money and a

card which you can add to your deck. You can rarely obtain

potions sometimes.

Though an enemy encounter is essential to build your deck as

it is the most common way to get cards so a few enemy

encounters are recommended, you are generally guaranteed to

reach the recommended encounters anyway so it is safe to

assume that even if we try to actively avoid as many enemy

encounters as we can, we will still get enough encounters.

Therefore we should minimize the amount of basic enemy

encounters we go through.

E. Unknown

Nodes that are symbolized by a question mark symbol is an

unknown event or encounter. They are randomly generated and

are very common throughout the spire second only to basic

enemy encounters.

An unknown node can sometimes be a random event, an

enemy encounter, a merchant, or a treasure, with that order of

rarity. A random event being very common and treasure being

very rare.

The random events that you encounter tend to be more

beneficial to the player though some of them can be

detrimental. Landing an enemy encounter would be

unfortunate and the least wanted outcome, while getting a

merchant would be fortunate and even more so for getting a

treasure.

Though it is random, an unknown event node tends to be

beneficial and should be more prioritized more than an enemy

encounter tile.

F. Elite

The last type of nodes are elites, symbolized with a monster

that has horns. They are randomly generated all over the spire

and are slightly more common than a rest site.

These elite enemies are incredibly powerful and dangerous,

you are expected to lose a good chunk of health fighting them

or you may even die. There are 9 different elites or mini bosses

that you can encounter in the spire. With an act having 3

different elites each. Each elites has different strengths and

weaknesses and should be carefully considered. As a good

matchup towards an elite can be a breeze while a bad one most

likely will cause a game over.

Due to the dangers an elite possess, they certainly will give a

good reward. After a successful elite encounter, the player are

guaranteed to get a random relic, cards, gold and a chance to

gain a potion. But as they are dangerous, they should be

avoided and the player should only encounter a safe amount.

The safe amount of elite encounter will vary greatly based on

the player’s strength and nearby nodes such as other elites or a

rest site.

G. Boss

A boss node is always located at the end of each act, with it

being shown by a big symbol of the boss you are going to

fight. Similar to elites, there are 9 possible bosses with 3 an act

having 3 different bosses each. Furthermore, each boss will

have different strengths and weaknesses similar to elites.

Unlike elites however, you can tell exactly which boss you will

fight therefore you can prepare a game plan and deck to beat

that certain boss right at the beginning of the act.

H. Buffed Elite

A Buffed Elite node is a one of a kind node that can show up

only once per act, unless you have already beaten it once on a

previous act before. They are symbolized by an elite node but

surrounded with fire effects.

These elites are stronger than a normal elites and should be

proceeded with even more caution than a normal elite. If you

were to win against a buffed elite, you will gain the same

rewards as you would with a normal elite but you will also gain

the green key.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

The prioritization of the buffed elite is a special scenario and

may needed to be calculated differently based on the scenario.

On one hand, they are dangerous and should be avoided more

than a normal elite but they are also necessary to gain the green

key.

I. Act 4

Act 4 is an optional act to get the true ending of the game. To

access it, you must defeat the act 3 boss and get 3 keys, the red

key, the blue key, and the green key. These keys are gained

from doing a recall in a rest site, choosing the green key over a

relic, and defeating a buffed elite respectively.

Getting these keys are a challenge as the red key will force

you to sacrifice a rest site to only recall over doing other useful

actions such as resting or smithing, the blue key will force you

to sacrifice a relic and the green key will force you to change

your route to fight and defeat buffed elite.

If you were to get all these keys and defeat the act 3 boss,

you will access act 4. There are only 4 nodes and a straight

route in act 4, making it unneeded to be calculated. These

nodes are a rest site, a shop, and a special act 4 elite and the

final boss of the game, The Corrupt Heart. If you manage to

defeat the heart, you will get the true ending of the game.

IV. APPLICATION OF DIJKSTRA’S ALGORITHM

A. Transformation of Slay the Spire’s Map into a Graph

While Slay the Spire’s map is a graph already, it will be

needed to be modified for our program to run it. The first thing

we need to do is transform it into a weighted-directed graph.

For the directional aspect, it is very simple. As we cannot go

down a floor, all of our nodes will only be connecting towards

the floor above it.

An extra thing we can do is connect some of the nodes

together. A series of nodes that do not branch off and only lead

to a single line can be connected and its values combined. This

part is not necessary but it may increase our algorithm’s

efficiency later on.

For the weight aspect, we can mainly do it by assigning values

of based on the desirability of a node. Say that due to the

desirability of a rest site, we will assign it a low value such as 3

and we will assign an undesirable node, an elite node for

example, a high value such as 7.

We are unlikely to get the optimal number of such values in

the first try and we have to modify it as we go, similar how an

AI would change the values of its code dynamically. At any

point, let us try to set these values.

1. Rest Site

Rest sites are quite valuable, only slightly behind nodes such

as shops and treasure. Therefore we will apply a low number

such as 3.

2. Merchants

Merchants are probably the second most valuable node only

behind a treasure node. So will assign an extremely low value

such as 2.

3. Treasure

The most valuable node is a treasure node, but as stated

before, it is guaranteed and the changing the value will not

affect the program at all. But we will assign it a low value like

1 for consistency.

4. Enemy

Enemies are quite undesirable so we will assign a medium

value such as 5.

5. Unknown

Unknown tiles are a wild card and can be both good or bad,

but as they are slightly better than they are bad, they will be

assigned a number lower than an enemy such as 4.

6. Elite

Elites are dangerous and should be avoided for the most part,

therefore we will assign it a high weight like 7 or so.

B. A Run of Our Code

A case study with the full 15-16 floors in a typical Slay the

Spire’s act may be a bit too much so we will recreate a smaller

scale set of floors for our case study.

Figure 10. A small artificial map of Slay the Spire.

Here is a small artificial dungeon which is made with ratios

of nodes that you would meet in an actual game. Our case

study also does not have the guaranteed treasures in the middle

as they are not very important to take into consideration.

As you would in an actual game, the game starts with you

being able to pick any of the 3 bottom monster nodes, after you

pick it, you will move up the chain normally and fight the boss:

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

The Slime Boss. An important thing to note is that we will

consider the 4 rest sites before the boss the end state, not the

boss itself.

Figure 11. Transformation of Slay the Spire’s map into a graph

Here is our graph after we convert it, we created the start

point A which can move to the first three monster nodes to our

choosing, and the four rest sites have been made into one node

as our final state. We have our graph ready to be run and

calculated by our algorithm.

No Node

Processed

Inserted/Updated

1 A B(5),C(5),D(5)

2 B E(10)

3 C F(9)

4 D G(10)

5 F H(13), I(14)

6 E R(26)

7 G N(22)

8 H J(20)

9 I K(19)

10 K L(24)

11 J M(23)

12 N R(26) → R(25)

13 M -

14 L -

15 R End State Reached, Deallocating Queue

Table V. List of processes in the priority queue.

After our algorithm runs, we found the optimal route to from

start to finish. It goes through the path A-D-G-N-R with a

weight of 25. A thing to note is that the path through A-D-G-

H-J-M-R has the same weight of 25, but due to ADGNR being

inserted into the queue first, it will be the one returned as the

solution.

C. Case Studies

As our “prototype” program is a static algorithm that

streamlined a lot of things from Slay the Spire, there certainly

are room for improvements.

Listed below are case studies of scenarios that could happen

in the game and other things that we can study and add onto

our program.

1. Act 4

 To reach act 4, you must reach certain conditions, the main

condition to consider is the mandatory buffed elite fight. So

our algorithm must find the shortest route to the boss that

also goes through the buffed elite node.

 This is fairly simple as all we need to do is to run our

program once with the start node as the starting position of

the player and the buffed elite as the target node. After we

find the optimal route from start to elite. We run our program

again, this time with the buffed elite as the start node and the

4 campfires as the target node.

2. Risk and Reward

 One of the main focus of the game is the risk and reward in

the game. A route that goes through a risky route might be

more rewarding (and necessary) causing the player to

become stronger and having an easier time to defeat the

boss.

 A major flaw of our program is that it will try to dodge

elites as much as possible and choose the safer non-elite

options. This is quite opposite of what we want actually. In

general, players would want to kill 1 or 2 elites and ignore

the rest as more than that might be a bit too risky.

 A way we can do this is too change the value of said elite

based on how many elites we have encountered on the path

so far. For example, say we have a route that goes through

two elites, the program will assign the first elite to a low and

desirable value such as 3, while the second elite while be

designated a 5, and so on. These numbers are still more

desirable or at least the same with your typical monster node.

If we encounter a third elite node, the program will designate

it a high value and try to avoid it.

3. Static Player Strength

 As the player goes through the spire, they are expected to

grow stronger, so that an elite they encountered nearing the

end of act would be much easier than an elite you encounter

near the start of the spire. The same concepts goes for

enemies and weirdly enough, merchants as well. You are

more likely to be richer at the end of the spire (unless you

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

spend it) than you are at the beginning of the game.

 The way to implement this is a bit straightforward. Each

node in the game are split already split into floors and you

can assign each node a floor with a higher floor being better.

An elite on a high floor will have a lower value than an elite

located in the lower floors.

4. A Dynamic Program

 Compared to our static program that calculates based on

assumptions at the start of the game, a dynamic program that

runs alongside that player sounds much better. A dynamic

program can calculate the strength of our player, their HP,

their gold so that they can make a route according to the

current situation of our player.

 Obviously, such a program would be challenging to

implement, so let us dissect the problem. The things that are

easy to consider are HP and gold as they are straightforward.

Low on HP? Find a safer route and try to find a rest site to

heal. You have lots of gold? Find a merchant.

 The more challenging thing to implement is character

strength, player strength is rather arbitrary and difficult to be

defined. Some cards work better with another card, a “bad”

card can become good if it has synergies, and the same for

“good” cards becoming bad due to a lack of synergy. The

same goes for relics and their synergy with cards and decks.

 With a character having around 80 unique cards each and

not counting the global cards for all characters, there are

thousands of combinations that makes it hard to clearly

assign an integer that represents player strength.

 A weak solution to this problem is to calculate the strength

of a player based on how many relics he has and how many

“good” cards he has. A good card can be ranked by its in-

game rarity, a rare/gold card tends to be stronger than a

common/silver card. Though this gets us closer towards

calculating the strength of the player, it isn’t very accurate.

Due to the fact that this program only counts rarity and

synergy between cards.

5. AI?

An AI, even though very complex can be added into our

program, it can learn alongside the player’s decision using

the data to manipulate its priorities of nodes and their values.

The main problem is that an AI typically needs hours of

training and as the game cannot be fully automated, a player

must play alongside the AI to learn, and since a player is a

human, they will have their limits.

V. CONCLUSION

Graphs are very useful tools that has many applications,

pathfinding is a common use of graph but there are other uses as

well. Using graph theory and Dijkstra’s algorithm, our program

can find an optimal route in the game Slay the Spire. Therefore

this program can be used to help a player find a good route to

play and beat the game.

The program is still only a prototype made to be the

foundation to the solution to our problem. It can be improved in

so many ways such as in the points mentioned previously.

VI. ACKNOWLEDGMENT

This paper is made possible thanks to all the lecturers and

professors of IF2120 Discrete Mathematics. The author, an

undergraduate of ITB in class 1 IF2120, would like to thank Dr.

Ir. Rinaldi Munir, MT as the designated class lecturer for class

1. The author would like to thank the creators of Slay the Spire

for creating a wonderful game to both be played and studied.

REFERENCES

[1] https://store.steampowered.com/app/646570/Slay_the_Spire/ , accessed on
December 14 2021.

[2] https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-

2020-Bagian1.pdf , accessed on December 14 2021.
[3] https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-

2021/Algoritma-Greedy-(2021)-Bag2.pdf , accessed on December 14 2021.

[4] Mehlhorn, Kurt; Sanders, Peter (2008). "Chapter 10. Shortest
Paths" (PDF). Algorithms and Data Structures: The Basic Toolbox.

Springer. doi:10.1007/978-3-540-77978-0. ISBN 978-3-540-77977-3.

[5] https://medium.com/@xuejunwang/slay-the-spire-a-great-combination-of-
randomness-and-strategy-3a4134fb502a , accessed on December 14 2021.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 14 December 2021

Jaya Mangalo Soegeng Rahardjo 13520015

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Algoritma-Greedy-(2021)-Bag2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Algoritma-Greedy-(2021)-Bag2.pdf
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1007%2F978-3-540-77978-0
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-3-540-77977-3
https://medium.com/@xuejunwang/slay-the-spire-a-great-combination-of-randomness-and-strategy-3a4134fb502a
https://medium.com/@xuejunwang/slay-the-spire-a-great-combination-of-randomness-and-strategy-3a4134fb502a

